0=(-16x^2)+220

Simple and best practice solution for 0=(-16x^2)+220 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(-16x^2)+220 equation:



0=(-16x^2)+220
We move all terms to the left:
0-((-16x^2)+220)=0
We add all the numbers together, and all the variables
-((-16x^2)+220)=0
We calculate terms in parentheses: -((-16x^2)+220), so:
(-16x^2)+220
We get rid of parentheses
-16x^2+220
Back to the equation:
-(-16x^2+220)
We get rid of parentheses
16x^2-220=0
a = 16; b = 0; c = -220;
Δ = b2-4ac
Δ = 02-4·16·(-220)
Δ = 14080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14080}=\sqrt{256*55}=\sqrt{256}*\sqrt{55}=16\sqrt{55}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{55}}{2*16}=\frac{0-16\sqrt{55}}{32} =-\frac{16\sqrt{55}}{32} =-\frac{\sqrt{55}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{55}}{2*16}=\frac{0+16\sqrt{55}}{32} =\frac{16\sqrt{55}}{32} =\frac{\sqrt{55}}{2} $

See similar equations:

| X2+x=96 | | 3y-3y=2 | | n13=−32 | | X+3.x=68 | | 45(2k+k)=180 | | 32x=13x | | 24-5x=3x+64 | | 6,170=0.15(x-14,600)+1460 | | Y=x+3500 | | 60=5n-5(3n-2) | | -3-x+2-4x+3=3 | | 3.x+40=61 | | -6x-14=2x=10 | | 2(-4x+3)=9X+6 | | k2=23,201.06 | | 4x+33=77 | | k2=-23,201.06 | | 2.y-20=160 | | 15=a2+7 | | 2(y+1)-4(y-2)=6y+10-8y | | 8.707.37+x=20.321.5 | | 180=x+(x+9)+7x | | -5(2x-7)-x+21=2(x+2) | | 3×+5y+15=0 | | b=1/2=1/2 | | 4u-10+u=8+3u | | 15+2w=–3 | | 6j-4=10-8j | | 5/8+2x=2x-2/8 | | 6j-4=108j | | -6+3+9m=10m-6 | | 104+5x+13+33=180 |

Equations solver categories